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of this nature is responsible for the value c ~ 18 A 
given by Neuhaus and Kitaijgorodskij, particularly 
since both of them experienced difficulty with the 
c-axis photographs (§ 2). The true length of the 
c axis should be revealed, of course, in the process of 
indexing general reflexions hkl with 1 odd in the 
oscillation photographs taken by Kitaijgorodskij ; but 
the c axis in fi-naphthol is so long that  the spacing of 
a plane (h, k, l) is nearly the same as that  of a plane 
(h, k, l+ l )  and indexing is not easy if the crystal is 
slightly mis-set; in any case Kitaijgorodskij does not 
appear to have indexed general reflexions. 

We have presented two independent lines of evidence 
suggesting that  crystals of fl-naphthol are polar (§ 3). 
If the validity of the evidence is accepted then the 
centrosymmetrical space group P2~/a determined by 
Kitaijgorodskij is unacceptable. 

I t  is possible that  the material which we have 
examined has a structure different from that  of the 
crystals examined by Neuhaus and Kitaijgorodskij; 
thus our material, with two non-equivalent molecules 
in the unit cell, may be built from molecules closely 
associated in pairs by hydrogen bonding between the 
hydroxyl groups whilst that  examined by Neuhaus 
and Kitaijgorodskij may consist of single molecules. 
We believe this suggestion is unlikely for two reasons. 
First, our material closely resembles that  described by 
Kitaijgorodskij; both materials are crystallized from 
carbon disulphide in the form of rhombic plates with 
a ,-~ 8.1 A parallel to the long diagonal and b ~ 5.95 
parallel to the short diagonal of the rhomb and 
fl ~ 119 ° 50'. Secondly, we have grown crystals under 
a variety of conditions from six different solvents and 
find that  powder photographs of all specimens are 
apparently identical. 

Kitaijgorodskij has deduced a structure for fl- 
naphthol, largely from geometrical considerations, 
which is said to give satisfactory intensities for the 
hk0 and 001 reflexions. Some of the geometrical argu- 
ments are not valid, however, if applied to our unit 
cell and space group, and no details are given of the 
agreement between observed and calculated inten- 
sities. We are continuing our X-ray examination of 
fl-naphthol with a view to obtaining full details of the 
crystal structure. 

One of us (H. C. W.) acknowledges his indebtedness 
to the Department of Scientific and Industrial Re- 
search for a maintenance grant. 
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The Fourier T r a n s f o r m  Method for Normal i z ing  Intensi t ies  
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A method for bringing experimental intensities to an absolute scale, based on the value of the 
electron distribution function in r = 0, is described. Formulas for the no,'malization constant are 
given for crystals and samples of spherical and cylindrical symmetry. The formulas represent 
approximate values. As an example, the percentage error in the normalization constant for cel- 
lulose is calculated as a function of the radius of the limiting sphere in reciprocal space, and the 
calculations are compared with experimental results. 

I n t r o d u c t i o n  

The method outlined by Krogh-Moe (1956) for con- 
verting experimental X-ray intensities to an absolute 
scale has been in use for some years at the University 

of Oslo. The method is described in a study of the 
cylindrically symmetrical distribution method in X-ray 
analysis (Norman, 1954a, b). As the original work is 
not well known, the formulas for the normalization 
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constant will be given below. For crystals the method 
leads to the formulas derived by Kartha (1953). 

Theory  

The coherently scattered radiation I(r*), measured 
in units of the scattering from a free electron, and 
the electron distribution function D(r), are combined 
in the following equation: 

I ~(u)~(u+r)du = I I(r*) exp [ - 2 ~ i r r * ] d r * .  D(r) 

(1) 
is the electron density in e./~ -3 and r* the scattering 

vector. D(r) can be split into two terms, D~t.(r ) and 
Din(r), Dat.(r) including that  part of the first integral 
in (1) where ~(u) and ~(u+r)  are the electron 
densities at two points within the same atom. Din(r) 
thus represents the structure-dependent part of the 
distribution function. I t  will further be necessary to 
introduce the function D0(r ) corresponding to a 
uniform distribution of the scattering matter. 

The coherently scattered radiation can be written 
as the sum of the structure-independent intensity 
Iat.(r*), and the structure-dependent intensity Ira(r*). 
If the homogeneous regions of the scattering substance 
are large enough (James, 1950, p. 508), the intensity 
will decrease towards small angles of scattering. The 
high peak around r* = 0, corresponding to a uniform 
distribution of the scattering matter, cannot be ob- 
served. Thus it is natural to extrapolate the intensity 
to zero for r* = 0; and the observed intensity, Iobs., 
can be written 

Klobs. = Iat. +Im +/inc.-- I0.  (2) 

K is the normalization constant,/inc, is the incoherently 
scattered intensity, and I 0 is the small-angle scattering 
intensity which is omitted. Iat. and Iinc. can be taken 
as independent of the direction of r*. If each scattering 
unit consists of n atoms, and the total number of units 
is N, the sum of the two intensities is 

n 

Iat.(s)+I~¢.(s) = N ~Y, (f}(s)+Sj(s)) = NB(s) . (3) 
j = l  

Here s = 2~lr*l, fj is the atomic form factor and Sj is 
the incoherent factor. B(s) is often called the back- 
ground, and can be calculated from theoretical values 
of fj and 5'j when the composition of the substance is 
known. 

From equations (1), (2), and (3) and the splitting of 
the coherently scattered radiation and the distribution 
function, the following equations are derived: 

= K l Iobs.(r*) exp [--2zirr*]dr* Dm(r)--Do(r) 

- N  I B(s) exp [ - 2 z d r r * ] d r * ,  (4 )  

and 

;V(" )~ 
D m ( O ) - ~ "  2 Zj = 

r o  \ j = l  
K l Iobs.(r*) d r * - N  l B(s)dr*. 

(5 )  

V0 is the volume of the n atoms in the scattering unit. 
The theory requires that  the integration in (4) aud (5) 
should be carried out throughout the whole reciprocal 
space. In practice the intensities can be measured only 
within a limited (often approximately spherical) 
volume of reciprocal space. As a consequence the 
calculated Dm(r ) will show false details. Neglecting 
these so-called diffraction effects and assuming there 
is no overlap of the electron densities for neighbouring 
atoms, the normalization constant can be expressed 
by the formula 

K IB(s'dr*-~--o(i~__zZ')2 
• ( 6 )  

N I I°bs'(r*) dr* 

Formulad  for t h e  n o r m a l i z a t i o n  c o n s t a n t  

In the following three sections the formula for the 
normalization constant will be specialized for spherical 
and cylindrical symmetry of the observed intensity, 
and for crystals. 

(i) Liquids 
If the distribution and intensity functions show 

spherical symmetry, and the volume element in 
reciprocal space is expressed in spherical polar co- 
ordinates, the expression for K/N becomes 

° 

1 82B(8)d8 - n Zj 
K 2zt 2 

- , ( 7 )  

N 1 ~oS2iobs (s)ds 
2~ ~ Jo 

where s o is the upper limit for s. 

(ii) Fibres 
For cylindrically symmetrical systems with x* and 

z* as cylinder coordinates in reciprocal space, formula 
(6) takes the form 

K ~ ~o 
- = . (8 )  

N 2~rffX.iobs.(x.,z.)dx.dz * 

(iii) Crystals 
In the structure determination of crystals, only the 

intensities at the reciprocal-lattice points are reg- 
istered. Under the assumption that the atoms in the 
crystal vibrate independently, all with the same 
mean-square amplitude in a direction parallel to the 
scattering vector r*, the expression for the coherently 
scattered intensity can be written (James, 1950, p. 24) 
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n 

I ( r*)  = N ~ f T ( 1 - e x p  [ - 2 M ] )  
j = l  

+exp  [ - 2 M ]  ~ Zf.ifk exp [--2~ir jkr*] .  (9) 
i k 

The first term, representing the temperature diffuse 
scattering, It.d., varies continuously in reciprocal space 
and has a very broad maximum at moderate angles. 
The second term represents the lattice spectra. Except 
for the temperature factor exp [ - 2 M ] ,  it is equal to 
the intensity scattered from the undisplaced lattice. 
The integrated intensities are measured above the 
background of incoherent and temperature diffuse 
scattering, and the new expression which has to replace 
equation (2) for the observed intensity becomes 

Klob~ = I h . + I ~ - I o .  (lO) 

The primes distinguish the intensities from the former 
Iobs., Iat., and I~. Introducing the interference func- 
tion Q(~,~, ~) (James, 1950, p. 9), the observed 
intensity and the structure factor in Arbitrary units 
are combined in 

Iobs.(~, ~], ~) = IFob~(~, r/, ~)I~-Q(~, r/, ~ ) .  (11) 

Using this expression for the observed intensity, the 
formula for the normalization constant becomes 

/at'dr*--V°° ( ~ 2 K =  f , N j = Z j )  
• (12) 

N 

The primed summation sign indicates tha t  the term 
for which h = k = 1 = 0 is not included in the observed 
intensities. 

I'at. is the structure independent scattering from the 
atoms 'modified' owing to the temperature vibrations 
in the crystal. Two different points of view may  be 
used to derive the expression for this intensity. Either 
only the real independent scattering from the atoms 
can be considered, giving 

n 

I~t" = / Y  ~ f ~  exp [ - 2 M ] ;  (13) 
j----1 

or the interaction between the atoms in the Bravais 
lattice can be included, leading to 

-Tat. = .,~,f~ exp [ -2M]Q(~,  ~, ~). (14) 

Equations (13) and (14) give the following two for- 
mulas for the normalization constant: 

exp [ - 2 M ] d r * -  Zj 
K = = ( 1 5 )  

1 ' 
v0  z' k, 

and 

Z ~ ' ~ ' f ~  exp [ -  2 M ] -  Z s 
U - - - -  h k l 7 = 1  

~ '  -~' [Fobs. (h, ]c,/)[2 (16) 
h k l 

These equations correspond to the formulas given by 
Kar tha  (1953). The formulas contain the temperature 
factor exp [ - 2 M ] ,  which has to be determined before 
the calculation of the normalization constant can be 
carried out. 

In the original work referred to (Norman, 1954a), 
the normalization constant was also determined for 
a periodic fibre structure. The intensity was measured 
above the background of temperature diffuse and 
incoherent scattering. In this case formula (8) for the 
normalization constant had to be replaced by formulas 
similar to (15) and (16). 

T h e  i n f l u e n c e  of  t h e  o m i t t e d  t e r m  Din(O) o n  
t h e  n o r m a l i z a t i o n  c o n s t a n t  

The formulas for the normalization constant in the 
previous section were deduced on the assumption 
tha t  the term D~(0) in equation (5) could be neglected. 
If the electron density drops to zero between neigh- 
bouring atoms and the diffraction effect is smal], the 
approximation is good. In the structure investigation 
of cellulose by means of the cylindrically symmetrical 
distribution method, the normalization constant was 
calculated for different upper limits of r*. When the 
intensity was expanded into a series of even Legendre 
polynomials, formula (7) could be used to determine 
K/N. Iobs. was replaced by the first term in the Le- 
gendre series. The result is shown in Table 1. 

Table 1. The normalization constant for ramie 
s o 4.0 5.0 6.0 7.0 
K/1V 5-78 6.43 6.32 6.37 

The calculations show tha t  the variation in K/N is 
small when s o -= 5 or larger, but tha t  the value drops 
by 10% when s o decreases from 5 to 4. This can be 
taken as an indication of the usefulness of the method 
for s o = 5 or larger. The tendency of K/_N to de- 
crease as s o gets smaller is understandable. When s o 
decreases, the diffraction phenomena will be more 
pronounced. Dm(O ) can have both positive and nega- 
tive values, and the diffraction effect will thus bring 
out ~luctuations in the normalization constant deter- 
mined from (6). The other effect of a decrease in s o is 
a broadening of the peaks. This will systematically 
lead to a positive value of Din(0 ). When K/N is deter- 
mined from one of the formulas in the~ previous section, 
the value of the normalization constant will come out 
too small. 

Finally, the influence of the term Din(0) on the 
normalization constant will be illustrated by the 
example of cellulose (Norman, 1954a). The first term 
in the Legendre series for a cylindrically symmetrical 
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dis t r ibut ion funct ion  D(r )  corresponds to a spherical 
symmet ry  in the  sample. I f  the  in terac t ion  between 
the  glucose groups is neglected, the  in tens i ty  Im(s) is 
equal  to 

. • 

Ira(s) = N Z,  ~, exp [ - 2 M ] f i f  k smsrjk (17) 
j ~:k sr ik 

The summat ion  should be t aken  over the a toms in the  
glucose unit .  Din(0) can be wri t ten  

N [*So sin srik 
Din(0) = t0 82 exp [ - 2 M ]  2 2fjfk (lS) 

i :t: k 8r~k 

I t  can be expected t h a t  only the  cont r ibut ion  from 
nearest  neighbours will influence the  value of Din(0). 
To simplify the  calculations,  the  0-(3 and  the  C-C 
distances were set equal  to  1.5 A and the  O - H  and 
C-H distances equal  to  1 A. For  M the  value 0.0182 
was chosen. 

From equat ion  (5), the  correct formula  for the  
normal iza t ion cons tant  in case of spherical symmet ry  
can be wri t ten  , 

K 82B(8) d 8 -  ~ Z 

× 1 .N . (19) 

The first  factor  is identical  with the  expression for 
the  normal izat ion cons tant  in (7). The last  term in the  
bracket  will thus  give the  error due to the  fact  t h a t  
Din(0) is omit ted  in formula  (7). 

For  cellulose the error has been calculated numeri-  
cally in the  in terval  8 o = 2 to  8 o = 10, and  the  result  
is shown by the  curve in Fig. 1. The percentage error 
drops from several hundreds  for 8 o = 2 to 30 for 
s 0 = 3 and to 5 for 80 = 5. Above s 0 = 7 the  error is 
less t h a n  3 %. In  Fig. 1 the  errors based on the  values 
in Table 1 are indicated by circles. I t  was assumed 
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Fig. 1. 

t h a t  the  error in  the  exper imenta l ly  de termined 
normal iza t ion  cons tant  was 2 .9% for s o = 7. 

Apar t  from the  low value a t  s o = 5, the  agreement  
between exper imenta l  and theoret ical  values is satis- 
factory.  Calculations have  shown t h a t  the  shape of 
the  curve for the  percentage error varies considerably 
with the  assumed in tera tomic  distances and  tempera-  
ture  factors in the  region s o = 4 to s o = 6. Thus  the  
curve would show a pronounced min imum at  s o = 4.5 
if only C-C distances were considered. "Therefore too 
much  weight should not  be pu t  on the  discrepancy 
between the  exper imental  and  calculated value a t  
8 0 = 5 .  
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